Challenging Current Control Strategies of Livestock Diseases

Nesya Goris
Sr Director Antivirals; Vice President Discovery Research

Robert Vrancken
Director Discovery Research

FESASS Assemblée Générale, March 20 2015, Brussels
Safe Harbor Statement

Special Note Regarding Forward-Looking Statements

This presentation contains forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995. All statements contained in this presentation that do not relate to matters of historical fact should be considered forward-looking statements, including statements regarding our expectations regarding the approval of products; the sufficiency of financial resources; expected future cash balance and liquidity; expectations regarding development programs, trials, studies and approvals; expectations regarding in-license initiatives, divestitures and partnerships; and expectations regarding the Company’s plans and opportunities.

These forward-looking statements are based on management’s current expectations. These statements are neither promises nor guarantees, but involve known and unknown risks, uncertainties and other important factors that may cause our actual results, performance or achievements to be materially different from any future results, performance or achievements expressed or implied by the forward-looking statements, including, but not limited to, the following: our limited operating history and expectations of losses for the foreseeable future; our lack of commercial sales; our failure to obtain any necessary additional financing; our substantial dependence on the success of certain of our lead product candidates, AT-001, AT-002, AT-003, AT-004 and AT-005; our inability to identify, license, develop and commercialize additional product candidates; our inability to obtain regulatory approval for our existing or future product candidates; the lack of commercial success of our current or future product candidates; uncertainties regarding the outcomes of studies regarding our products; our inability to realize all of the anticipated benefits of our acquisitions of Vet Therapeutics and Okapi Sciences; effects of competition; our failure to attract and keep senior management and key scientific personnel; our complete reliance on third-party manufacturers and third parties to conduct all our target animal studies and certain other development efforts; our lack of a sales organization; our significant costs of operating as a public company; changes in distribution channels for pet therapeutics; consolidation of our customers; impacts of generic products; unanticipated safety or efficacy concerns; our limited patents and patent rights; our failure to comply with our intellectual property license obligations; our infringement of third party patents and challenges to our patents or rights; our failure to comply with regulatory requirements; our failure to report adverse medical events related to our products; legislative or regulatory changes; the volatility of our stock price; our status as an “emerging growth company,” as defined in the JOBS Act; the potential for dilution if we sell shares of our common stock in future financings; the significant control over our business by our principal stockholders and management; effects of anti-takeover provisions in our charter documents and under Delaware law; and our intention not to pay dividends. These and other important factors discussed under the caption "Risk Factors" in the Company’s prospectus included as part of the Registration Statement on Form S-1 filed with the Securities and Exchange Commission, or SEC, on January 13, 2014, along with our other reports filed with the SEC, could cause actual results to differ materially from those indicated by the forward-looking statements made in this presentation. Any such forward-looking statements represent management’s estimates as of the date of this presentation. While we may elect to update such forward-looking statements at some point in the future, we disclaim any obligation to do so, even if subsequent events cause our views to change. These forward-looking statements should not be relied upon as representing our views as of any date subsequent to the date of this presentation.
Antivirals = Proven concept in human medicine
No antivirals for animals?

Drug development in human medicine

- In vitro discovery
- Pre-clinical
- Phase I
- Phase II
- Phase III
- Animal models

HIV / AIDS
Hepatitis B/C
Herpes: HSV/VZV/CMV
Why antivirals for livestock?

- Prevent spread of the virus
 - Rapid response
 - Rapid response stockpile: no stability issues
 - Ease of application
 - Mix in feed
 - Rapid containment
 - Acts directly on the virus: freeze, reduce and prevent infection
- Minimise impact on export
 - Not depending on immune system
 - Differentiation with infected animals
 - Residues
 - Optimise compound for short withdrawal time
- Epidemiological and cost-effective strategy
FMD control measures

- Ban on prophylactic vaccination
- Pre-emptive culling
- Emergency vaccination (DIVA)

Prophylactic vaccination (conventional vaccines)
2001
FMD Hits UK
4.9 million sheep culled
0.7 million cattle culled
Summary of 2001 FMD outbreak in the UK

- **Total cost**: £8 billion
- **First case**: 19 Feb 2001
- **Last case**: 30 Sep 2001
- **Total # cases**: 2030
- **Last cull**: 01 Jan 2002
- **80,000 – 93,000 culls/week**
- **6 million culls for disease control**
 - 1.3 million on infected premises
 - 1.5 million on dangerous contacts
 - 1.2 million on neighbouring premises
 - 2.0 million welfare culls
- **~4 million extra culls “at foot” of young animals**
- **10 million animals were culled**
- **£2.5 billion in compensations**
FMDV hit screening – Unique collaboration

[Willems et al., 2011]
From hit to lead compound

Hit compound

- only Eurasian
- 4.5 µM
- ±
- ✓

Compound profile

- Active against 7 FMDV serotypes
- Active in low nM range
- Stable and soluble compound
- Easy synthesis

Combination compound

- ✓
- 45 nM
- ✓
- ✓
What a difference a factor 100(0) makes...

Economic viability of FMD antiviral containment approach will be key
Proof-of-concept with antivirals and FMDV

- SCID mice FMDV A_{22} Iraq 24/64 inoculation i.p.
 - 2’-CMC administration s.c.
 - 5 consecutive days from day 0 → day 4 p.i.
 - 2 x 50 mg/kg per day

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mortality</td>
<td>100%</td>
<td>0%</td>
</tr>
<tr>
<td>Mean day of death p.i.</td>
<td>4.0 ± 1.3</td>
<td>>14</td>
</tr>
<tr>
<td>Weight loss</td>
<td>>20%</td>
<td>healthy</td>
</tr>
<tr>
<td>Respiratory distress</td>
<td>severe</td>
<td>healthy</td>
</tr>
<tr>
<td>Viraemia serum 2 d.p.i.</td>
<td>100%</td>
<td>~2000-fold decrease</td>
</tr>
<tr>
<td>Viraemia serum 14 d.p.i.</td>
<td>†</td>
<td>negative (13/15)</td>
</tr>
</tbody>
</table>

SCID mice have crippled immune system (lacking T-cell and B-cell responses)
13 of 15 mice completely protected by 2’-CMC
Protection is solely due to 2’-CMC

[Lefebvre et al., 2010; 2013]
Classical swine fever
CSF control measures

- Prophylactic vaccination (conventional vaccines)
- Ban on prophylactic vaccination
- Pre-emptive culling
- Emergency vaccination (DIVA)
Classical Swine Fever
Benelux 1997-1998

12,000,000 Pigs killed
Damage above €3 billion

United Kingdom 2000

75,000 Pigs killed
Compensation £4.4 million
Proof-of-concept with antivirals and CSFV

- Experimental efficacy studies in pigs
 - BPIP treatment of CSFV-infected piglets reduces
 - Viral load by 1000-fold
 - Viraemic period by 74%
 - Transmission rate to untreated sentinels by 85%
 → Input parameters used in epidemiological disease modelling studies

- BPIP = early hit compound; not optimised; not highly potent

Vrancken et al., 2008; 2009a; 2009b.
Model impact of different CSF control measures

Dense pig population in The Netherlands

- Starting situation
 (e.g. simulation 74 of 1000)

- Control strategies (selection)
 - 1 km pre-emptive culling (all animals)
 - 2 km vaccination (except sows)
 - 2 km antiviral treatment (all animals)
 - 2 km vaccination (except sows) + 2 km antiviral treatment (sows)

CSF outbreak in De Peel, a DPLA in the Netherlands with intensive pig reearing
Source farm and 10 others farms infected before detection of CSFV

Model impact of different CSF control measures

Application of pre-emptive culling in 1-km radius around detected farms

Model impact of different CSF control measures

Application of E2-subunit emergency vaccination in 2-km radius around detected farms

Dutch CSF contingency plan preferred method for densely populated pig areas
Sows are left unvaccinated

Model impact of different CSF control measures

Application of antiviral treatment in 2-km radius around detected farms

Model impact of different CSF control measures

Application of antiviral treatment combined with E2-subunit emergency vaccination in 2-km radius around detected farms

Model impact of different CSF control measures

Simulating CSF outbreaks in The Netherlands
Economic aspects

Dense pig population in The Netherlands

Direct costs of CSF outbreak

- Costs to authorities (not reimbursed by EU Veterinary Fund)
- Costs to farmers
- Costs to authorities (reimbursed by EU Veterinary Fund)

Indirect costs of CSF outbreak

- Costs of trade restrictions
- Costs of ripple effects
- Costs of spill-over effects

Only this small fraction of total costs were considered in model
Simulating CSF outbreaks in The Netherlands

Economic aspects

Benchmark:

Pre-emptive culling (1km)
Difference: 132 M€
Doses: 13 million
Price tolerance: 10 €/dose

Emergency vaccination (2km)
Difference: 7 M€
Doses: 1 million
Price tolerance: 7 €/dose

* Cost of antiviral drug not included
Concluding remarks

• Antiviral drugs are a viable alternative for conventional control measures
• Innovative and conventional methods not mutually exclusive
• Additional weapon in disease control arsenal
Relevant Literature

- **General concept – Containment of livestock diseases using antiviral drugs**

- **FMD and antiviral drugs**

- **CSF and antiviral drugs**